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FOREWORD

This program, the development of the isogrid design handbook, was
conducted by the McDonnell Douglas Astronautics Company at Huntington
Beach, California undcr NASA Contract NAS 8-28619. The contract was
administered under the direction of John Key, Marshall Space Flight Center,

NASA,

The McDonnell Douglas program was conducted under the direction of 3
Dr. George Moe, Director, Research and Development, with M, B, Harmon

acting as principal investigator. Dr. Robert R. Meyer was the principal

contributor to this document, being respousible for Sections 2 and 4, basic

theory and analytical techniques. Other major contributors include 1

Mr. O. P. Harwood and Mr. J. L Orlando.

The information in the document was obtained from:; {1) the results of

analysis, test, and advanced manufacturing studies of Independent Research
and Development programs, (2) a phase B space shuttle booster study funded
by the NASA Marshall Space Flight Center, (3) an isogrid tank test program
funded by the NASA Marshall Space Flight Center, and (4) the Delta program
isogrid structural tests funded by the NASA Goddard Space Flight Center.

T R Ve

Appreciation is expressed to Mr. Jack Furman of the NASA Marshall Space
Flight Center for his continued interest in the development and application of

isogrid to aerospace structures. ;
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ISOCRID DEFINITIONS

thickness of skin

width of rib web

depfh of weo

depth of flange

width of flange

t+d = plate thickness of unflanged isogrid

height of triangle

leg of triangle, i.e., distance center to center of nodes

d x- & we

¢ , . bd B
t’ t’ th ¥ ~ Th

non-dimensional parameters

2

1+ o+ [30468 + 3p01en® + 1 as® « ]

-3 fase - p(1+x)]2

bending stiffness parameter. (For unflanged isogrid, X\ =p -

BZ = [?m,(1+6)2 + (1+a) (l+a&2)].)
Et . .
3 (1 + @ +p) = extensional stiffness (u = 0 for unflanged
1-v
isogrid)

12 (l-vz)

isogrid)

3 2
< = ><1 +pa + p> bending stiffness {u = O for unflanged

t (1 + «a+p) - equivalent thickness for membrane stresses

(w0 = 0 for unflanged isogrid)

t (1 +3a + 3u) - equivalent weight thickness (s - 0 for
unflanged isogrid)

il
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E*

. B
g

Equivalent thickness and Young's modulus
= to obtain correct Kand D (u = 0 for unflanged

E (1 + a +E)2 isogrid)

Use of E* and t* in monocoque equations gives correct stress

resultants, couples, strains, curvature changes and
displacements.
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Section 1

INTRODUCTION

1.1 BACKGROUND
The establishment of new, lightweight, economical, and efficient structural
concepts for aerospace structures has long been an objective of NASA and

the industry.

Lightweight, compression-load-carrying structures form part of all air-
craft, booster, and space vehicle structures. Aircraft such as the DC-6 or
DC-7 used mechanical'y attached stringer, frame, and skin construction,
which are of course 99)-degree stiifened structures. Boosters, however,
were designed as integrally stiffened structures because of leakage con-
siderations. In the Saturn vehicle, the S-1I second stage duplicated aircraft
0- to 90-degree patierns with an integral, constant-height machined pattern.
The S-IVB stage, «s well as the Thor, used square patterns rotated through
45 degrees.

The 0- to 90-denirec and 45-degree stiffening patterns used in the stages of
the Saturn vehi:le are extremely efficient in certain load regimes., However,
they are inher:ntly four bar linxs prevented from collapsing by the integral

skin and as a result have little in-plane torsional resistance capability.

In 1964, Dr., Robert R. Meycr under a NASA -MSFC contract, Reference 1-1,
set out to fiad the optimum stiffening pattern for compressively loaded
domes. A goal was to find a structural arrangement that negated the short-
comings o. the 0- to 90-degrec and 45-degree patterns without introducing
other penalties such as increased weight. The concept that was found to be
the mos'! promising was triangulation of the stiffening members. This
patterr took advantage of the simple fact that triangular trusses are very
efficient structure., This work showed significant promisec and was cxtended

to cylinders as an Independent Rescarch and Development program, After

1.0.001
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many years of development, this stiffening concept is now being used as
structure for Delta vehicle tanks and interstages (Reference 1-2), Delta

shrouds, orbital shrouds, and Orbital Workshop interiors.

The new structure is called "Isogrid' since it acts like an isotropic material,

In a recent phase B design study funded by NASA for a recoverable space
shuttle booster, isogrid (triangular integral stiffening) was used in the
fuselage design, The vehicle requirements included (1) the capability of
carrying high torques from the wings, (2) supplying multiple attach points
for an external thermal protection system, and (3) the need to resist very
high point loads from the atiaciied piggyback orbiter. The isogrid con-
struction had (1) high torsional resistance, {2) many nodal points, which
could ke used as attach points for the thermal protection system standoff
structures, and (3) the capability of resisting the orbiter attach loads with
local stiffening of the isogiid pattern and a few added internal compression
members. Full-scale and model testing was conducted to supplement test
results previously obtained for the Delta vehicle, These tests served to

verify the structural concept.

It is important to riote that studies have shown that the lowest structural cost
is associated with structure having the fewest parts. Relative costs of
major subassemblies of the Saturn S-1VB stage, Figure 1-1, are indicative
of this cost pattern, The tank cylinder was designed with integrally
machined 45-degree waffle panels to assure leak tightness, not to save
money, The cost difference between the aft skirt and interstage, both built
in the same structural style, must be attributed mainly to the installation of
equipment in non-standard fashion in the former compartment (see Fig-

ure 1-2), Evidently, these secondary functions cannct pe ignored in the
selection of a concept for primary structure., The evidence suggests that a
waffle type of structure, such as isogrid, with a pattern of rib intersections
usable for equipment attachment is an economical way to design structure if

its efficiency is to be fully realized.

1.0.002




CR169
FORWARD SKIRT SKIN AND STRINGER 38
TANK DOMES WEL.DE D MONOCOQUE 18
TANK CYLINDER WELDED INTEGRAL 10
WAFFLE
COMMON BULKHEAD 8ONDED HONE YCOMB 33
THRUST STRUCTURE SKiN AND STRINGER 49
(CONICAL)
AFT SKIRT SKIN AND STRINGER 43
INTERSTAGE SKIN AND STRINGER 14

Figure 1-1. S-IVB Relative Costs

i.2 USE OF THE HANDBOOFK
This handbook presents informat:on needed to design isogrid, triangular
integral stiffencd structures, Some key points about isogrid arc shown in

Table 1-1,

The handbook covers both unflanged and flanged isogrid with the information
on flanged isoprid being so designated,  All other information applics to

unflanged isogrid,

The basic theory for the analysis of (cogrid is presented in Section 2, The
user should acquaint himseltf with this analysis and its asswmptions betore
using the handbook, Both unflanged and flanged isogrid are coverod by this
section, The basic theory is summarized at the end of the =cction to ccrve

as a ready reference,

1.0.003
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Table i-1
ISOGRID

e A lattice of intersecting ribs forming an array of cquilateral

triangles
° Characteristics:
- Isotropic (no directions of instability or weakness)
- Poisson's ratio 1/3
- Efficient in compression and bending

° Advantapges:

- Easily analyzed

- Can be optimized for wide range of loading intensities

- Standard pattern for attachment (nodes acconminodate
equipment mounting without change)

- Readily reinforced for concentrated loads and cutouts

- Redundant load paths

- l.ess structural depth
° In use on two major rpace programs, Thor-Delta and Skylab,

and extensively investigated and tested on space shuttle study

cffort

Section 3 describes the characteristics and advantages of isogrid, including

some current and tuture applhications ‘or vehicle structure,

Section 4 presents the analysis methods Tor typical structure found in acro-
space vehicles. lypical design situations arve described for cach type of
structure, and mecthods »f optimizing the structure for minimum weight are
given where such metheds exist, The method of analysis is followed by
worked examples, which are given to guide the uscer in the application of the
equations and of the graphs, The graphs enable the user to quickly and

accurately sizc isogrid structure, The structural types presented ares

® Spherical cap with reverse pressure
o Cylinders in compression, bending
° Cylinders under torsional shear
)
1.0.006 '

T I L R T I N T T T .A_&‘_L,_J




Cylinders under uniform external pressure
In-plane concentrated load in an infinite sheet
In-plane concentrated load at the edge of a sheet
Cutout reinforcement

Open isogrid shear webs

Open isogrid cylinders in compression, bending

Open and skinned isogrid plates

Other structural types such as cones have not been analyzed to date and are

not included.

To complete the sections, information is given on: (1) the minimum overall
weight for cylinders subjected to axial compression and bending, and (2) off-
optimum isogrid, Section 4,12 is a very important note on the use of the x,

y, «, and § curves to ensure accuracy.

Section 5 describes the effect of node flexibility on the local stress distri-
butions in isogrid and recommends mecthods of analysis, Section 6 presents
information on model, sub-scale, and full-scale testing. Finally, Section 7
presents information on manufacturing techniques developed on production
hardware and in advanced manufacturing research programs to date, The
topics covered are:

° Machining

° Power brake forming

° Creep and age forming

e Compound curvatures

L2

References used in the text ave listed,

This handbook is set up to allow the user to insert new pages of data or
entire new sections by using the decimal page numbers, Care should be
taken to remove obsolete material inmimediately and to add test information as
it becomes available to the user from vescarch or development in his com-

pany or NASA agency.

1.0.008
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Section 2
BASIC THEORY

The isogrid rib-grids are analyzed by '"smearing out'', averaging, or taking
mean values of the grid properties so that the gridwork is considercd as a

solid continuous sheet of material with appropriate elastic properties.

It is shown that if one assumes a uniaxial state of stress in the bars, the

smeared-out elastic constants are identical‘to those of an isotropic material

in plane stress.

When ribs and skin are combined, the composite construction is treated as
an isotropic layered material, with appropriate elastic constants for each

layer, viz., rib-grid and skin.

The key to the analysis is strain in the construction. The internal strains
in the composite construction are determined by the stress resultants and
couples in the composite construction. These relations are shown to be
isotropic in character. From the composite strains, the stresses in the
elements of the individual layers may be determined. For the bars, these
depend upon the bar orientation. For the skin, they are dependent upon the
orientation of the normal of the plane upon which the stresses are assumed

to act.

2.1 HOOKE'S LAW FOR ISOGRID RIB-GR1D
The isogrid rib pattern consists of a network of equilateral (60 degree) tri-
angles. The Hooke's law relations are developed by isolating an element of

the gridwork and assuming that the individual bars are in a state of uniaxial

stress,

2.0.001
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Element of Isogrid Rib Grid

By means of the strain transformation law,

e - € cos2 0, +Y sin @, cos 6, t e slin2 0. 2.1. 1)
X i xy i i y i

one obtains the relation between the uniaxial bar strains, e, and the x, ¥y

grid coordinate strains, e, ey and ¥_ .

xy
{
°11 1+ 0 0 "-xW
1
{e, 2 1 ¥v3 3 Yoy { (2.1.2)
1 -¥3 3
(3 ey |

Note that the strain transformation is invertable, so that if (el, e, e.;) are
known (for example from strain gage readings) then (ex, ny, ev) may be

determined, In fact,

( \
€ x 30 0 €
1 -
Nyt 3 0 2¥3 -2V3| Le,} (2.1, %)
-1 2 2 e
{"‘v 31
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The uniaxial bar loads are:

P,

1

[l

bEe .
i

i=1,2, 3

(2.1.4)

Resolutes of the bar loads in the x and y directions divided by the periodic

lengths, a and ¥3 a give the ''smeared-out' or mean value stresses in the

grid element,

Lo ZPl + (P2 + P3) cos 60° ) 4Pl + P2 + P3
X Y3a 2¥3a
. o
o (P, + P.) sin 60 _ vz (P, + P,)
y a 2a
: o
A i (PZ - P3) sin 60 i PZ - P‘3

T = T = =

xy yXx V3a 2a

Using eq. (2.1.4) and (2.1,2), these become,

L 9 bE 1 13 e,
T 2 bE
Xy yx 8 h 'xy
where
h - g—.i a, the triangle height.

(2.1.5)

(2.1.6)

(2.1.7

(2.1, 8

(2. 1.9
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By comparing eq. (2.1.8) and (2.1.9) with the Hooke's law relation for

isotropic materials in plane stress,

0’_ l v e
2l QO E 3 x (2.1.10)
%y L-volv 1) ®y
i ) E
xy Tyx ~ 2 (1+v) ny (2.1.11)

it is evident that eq. (2.1.8), (2.1.9) are a special case of (2.1. 10), (2.1.11)

whe e
v L
(2.1.12)
. b
E hE

and the barred quantitics indicate the equivalent Poisson's ratio and Young's

modulus of the gridwork,

2.2 ENXTENSIONA L AND BENDING STIFFNESS FOR
COMPOSITE RIB-GRID AND SKIN CONSTRUCTIONS

Many con-tructions may be idealized as elastic plates and shells. This con-
cept is a two-dimensional approximation of three-dimensional elasticity,
which replaces the threc-diimensional body by a two-dimensional surface.
The loading on the surface is considered to be resisted by stress resultants

and stress couples obtained by integrating the stresses and moments in the

thickness direction, o
y
Ny My
v y
Nyx My x
Qy
z Nxy
M
N' z X
N x Mlv

STRESS RESULTANTS STRESS COUPLES ON

ON REFERENCE SURFACE PEFERENCE BURFACE x

ELEMENT ELEMENT

2.0.004
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These are computed per unit length of the reference surface coordinates, x

and y. If the small differences in length of a surface parallel to the refer-
ence surface at a distance Z from the reference surface is neglected, these

stress resultants and counles may be written as follows.,

N o
X X
N T
Xy xy
) NY L - f oy ¥ dz (2.2.1)
Qx 7z Tz2x
Qy Tzy
\ J )
Mx 0y
-M = ] T ZdZ (2¢ 2- 2)
Xy Xy
M
y 7z Oy
where
= N and M = M
Xy x yx

n \

“x () ‘ € x (Xx

Py 213 = Iy 4 -2 Lax (2.2.3)
¢ (2) ¢ X

AN V) \ Y

where (¢ , Y , ¢ ) are reference surface strains and (X, 2X , X ) are
X xy Y X Y

Xy
reference surface changes of curvature, together with the appropriate

Hooke's law relation for eacih layer, The relations between stress results
and couples and reference surface strains and changes of curvature may be

expressed in the following form,



e aiade i mw -

(
Nx ‘ K vvK 0 0 r‘x‘
Ny vk K 0 0 ‘Y
X 0 0 vb D X
{-M X
y ) y )

, ’ : (2.2.5)
: M M ' ¢ L0 DJ {ax
} X yx Xy
z K is the extensicaci sti‘fness,
t
§
; . 1
: K« — E (2) dz (2.2,6)
. 1 -v
‘ D is the bending stiffness
! 1 ) 2 ,
D - — ]L(z)zdz (2.2.7
1 -v . *,
and the reference surface has been chosen so that
j E(z) zdz = 0 (2.2.8)
z

E(z) of course is the appropriate Young's modulus of ribs or skin as a

function of the thickness coordinate, z.

The integrals (2.2.6) - (2. 2. 8) may be evaluated geometrically by a device

known as the method of the "transformed section,"

Let Eg be a constant reference modulus.

E
K - _&[[%‘sz (2.2.9)

1 -v o /

|
i
:

2
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E (2.2,10)

0 :[ =) L2,
[0}

(2.2,11)

ke

The quantity E(z)/Eo may now be thought of as a ""transformed width" of the
unit section. It is convenient to take EO as the modulus of the skin., The skin
} width will then be 1, 00, Only the rib will be transformed,

1.00

@ t

| ©) ar2 T¢
&

d/2
® ¢

W/h ?

TRANSFORMED SECTION OF ISOGRID WITH FLANGE

Let

t = skin thickness

b, d = rib web thickness and depth

j
w, ¢ = flange width and depth

h = triangle height

2.0.007
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The transformed rib width is b/h. The transformed flange width is w/h,
Choose an initial normal coordinate, ¢, from the midpoint of the rib web.

The final normal coordinate, z, will be chosen io satisfy the condition,

I%ﬁ zdz = 0

(o]
z

This is equivalent to saying that z = 0 is the centroid of the transformed

section.

Define the following non-dimensional parameters.

d = ot
c = A\t
_ bd
* = th
. owe
B T th

Using the parallel axis theorem, a tabular analysis of the geometric proper-

ties of the transformed section appears as follows:

St Sl e halhash el

Part Ai gi Aig‘ Aigi o 12

O ——

(1+6) 22-(1+5) t-;}-(ua)z Lo

-
[o5F Lot

2 3
t t 21t 2
tp -3 (140 -5 p (N b w1y B )

®
@ ta 0 0 0 Ei.% (6t)2
©,

3 2
z |ta+atp) ‘;[ma) - u1+n)] -%—[‘“6’ ':1—32[1+a62+p\ ]
w0+
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b -
I :ZAigi 4.21(“-Ag
i

1

A and I are respectively the area and moment of inertia of the transformed

sectio .
A = t(l +atp)

 [(116) - 4(140]

E ) 1 +a+yp
2
. [i1e6) - w(1+N] l
t 2 2 2 2 ) )
I T3 1310 + 3 (LANT 4 L+ adT N - R ’
or
3 52
I - t_p
12 (1 + ot p)’
where

2 . 2 2 2 2 2
B (1 +atp) [5(1-96) P30T+ 1+ ab” bpn ] - 3[(148) - p(iN]

The number of independent non-dimensional parameoters is four: a, 65, \,

and p.

Y




From eq. (2.2.9) and {2.2.10) one obtains

D - 2E I
(2.2.12)
K = %EOA
since
v = 1/3,

The foregoing analysis assumes that the Poisson's ratio of the skin material
is also 1/3. If this condition is not satisfied, it will not be possible to
express eq. (2,2.4) and (2.2.5) in the simple form shown, Reference 2-1.

For aluminum materials v = 1/3,

Certain small terms not obtainable from the foregoing integration process
and arising from the twisting rigidities of the bars may be added to
eq. (2.2.4) and (2.2.5). For thin rib, these terms are negligible,

Reference 2-1,

z.3 NON-DIMENSIONAL STIFFNESSES FOR UNFLANGED
ISOGRID

For unflanged isogrid, X =u = 0 in the equations developed for flanged isogrid

on the preceding pages.

2 , 1/2
B = Bla,d) = [3a(148)" + (1+a) (1+ab7)] (2.3.1)

For construction consisting of skin alone (monocoque),

(2.3.2)

2.0.010




In terms of v and B,

E t

K = (1+a) (2.3, 3)
l-v
Eot3 62

D - (2.3.4)
lZ(l-vz) l+a

It will be noted that E 1:/l-vz and E t3/12(1 uz) are the extensional and
bendmg stiffnesses of the skin alone, while the non-dimensional factors (1+a)

and [3 /(1+a) represent the relative increases in extensional and bending stiff-

nesses due to the ribs.

A plot of B(e,5) is shown in Figure 2-1, This graph is useful when B is known

and it is required to determine a and 6,

Suppose, for example, the required D and t are known. Then,

L%
|
O

]

Pt
<+
)

where C is some constant value. Solving for B,

B = \/C(l+a)

If this relation is plotted on transparent paper to the same B, a scale as the

B(a, 6) graph and superimposed on the B(a, o) graph, acceptable values of a

and b may be read off.

The B(@, b) graph will also be found very useful for off-optimum perturtation

from optimum construction,

2,4 MEMBRANE STRESSES
For many conditions the changes of curvature and associated bending stresses

are negligible., The imnembrane stresses may be determined by simple

2.0.011

R, .



CR169

chaie

24

I R H

Figure 2-1. Plotof (a8} Curves

2.0.012

© araenr——

iy (g —— &

§
¢
£
}




i

R VA

equilibrium conditions or may be known from plane stress solutions in

classical elasticity, Reference 2-2,

as given,

N
X

N
y

while

and

K =

a—

Thus N , N
X X

and N

may be regarded

The problem now is to solve for the skin and rib stresses.

Eq. (2.2.4) reduces to,

9

8

_ K[l 1/3] e,

L1/3 1

Et(1+

)

e
y

solving for the strains,

Y
Xy

1

1 -1/3
Et(l+a) -1/3 1

' N
8 __xy
3 Et(l+a)

2,4,1 Skin Stresses

|

X

These are given by this Hooke's law relation for the skin,

I - =

R

2.0.01s

(2.4.1)

(2.4.2)

(2. 4.3)

(2.4.4)

(2. 4.5)

(2.4.6)

(2.4.7)
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By use of (2.4.4) and (2.4, 5) one obtains the skin stresses, ¢, ¢, T -

x' %y Txy
Gx 1 NX
i} . 2.4,8
o t(l+a) |N ( )
y
. S (2.4.9)
Xy t(l+a) “xy :
If the quantity tef’ = t{l+a) is defined, then, (2.4.10)
N N N_
¢ - —=, a = X, T 7T y (2.4.11)
X eff Y eff Y eff

These stresses must be equal to or less than the allowable stresses in the
construction., If the stresses are tensile, they may be compared with yield
or ultimate allowable stress., Tf the stresses are compressive, one may
consider constructions with buckled or unbuckled skin. In the case of
buckled skin, the problem is to determine the effective stiffness of the panel,
One may use effective width concepts in this case where the effective skin
material is treated as a porticon of this rib, In the case of unbuckled skin,
the problem is to determine the buckling allowable in the skin panel. This
depends upon the size of the triangle, the skin thickness, the stress field in
the skin, Young's modulus and the edge fixity of the triangle. The edge
fixity, in turn, depends upon the geometry of the ribs and the stress ficld in
the ribs, Some tests have been conducted to determine conservative esti-

mates of edge fixity and more are under deveclopment,

Triangle sizes will vary considerably depending upon buckled or unbuckled

skin requirements and edge fixity values,

2.4.3 Rib Stresses

The rib stresses are a little more complicated than the skin stresses, This

is due to the fact that the bars are not all oriented in the coordinate directions

x and y.

20.014




From eq. (2.1.3) and (2.1.4),

Pl
Gl:T:Eex
P
2 _E
o, = 5 C 4(ex+~fsxxy+3ey)
P
3 E
= — = = - 3
oy 5 4“ex N3 ny+ ey)

Using eq. (2.4.1) and (2.4.2) these become,

1

o, = siray Nk o Ny
6. - —E— (N + N3N_) (2.4.12)
2 3t (1+a) y Xy ° e
6 - ——fm (N - A3N__)
3 3t (1+a) 'y xy
One notes that if Nx and Ny are principal stress resultants, ny =0
R 1
% 7 Hite -(Nx 3 Ny)
(2.4.13)
. . 2 :
o, * 93 ° TTia) y
If, in addition, N_ = 0, theno, = ¢, =0
y 2 3
and
Nx
o T (2.4.14)

teff

Note in the application of cq. (2.4.12) that the | bar is oriented in the direc-

tion of the x axis and that the 2 and 3 bars are at +h0 degrees to the x axis,

see sketch on Page 2.0,019.

2,0.01%
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¢ For example, consider a cylinder with internal pressure with one set of ribs
in the circumferential direction. In this case, x is the hoop coordinate and

y is the longitudinal coordinate.

Nx = pR,
N - PR
y 2"’
N = 0
Xy
and,
x eff

eff

5 pR

o TG e,

1 6 teff
R
92 7 9% ° §tp—
eff

2.5 EQUIVALENT MONOCOQUE E* AND tx*
Because of the isotropic properties of the construction, it is possible to use

all the established isotropic solutions from extensively developed theory for

plates and shells, References 2-2 to 2-8.

In many casecs, these are expressed in terms of the bending and extensional
stiffness. In other cases, however, the solutions have been reduced to more
primitive parameters. For such cases, it is possible to determine «n
equivalent monocoque thickness, t* and Young's modulus, E%*, which will

give the same bending and extensional stiffnesses as (2.2.7) and (2.2.6).

2.0.01¢
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Thus,
o b E A E t
K = E——%_ - =2 - =% (1+a)
l1-v l1-v 1-v
3 E I E t 2
) DRI 33
p = EXt: . _o_ . ! £ (2.5.2)

2
12(1-v%) 1-v© 12(1-v%) 11@

where A and I are the transformed area and moment of inertia and where the

expressions in @ and  arce valid for unflanged isogrid.

Solving (2. 5.1) and (2. 5. 2) for t* and E*,

P LZ—I- _g.—
te = \’A = t1+a (2.5.3)

L2
Ex - Etﬁ - Eil—‘ﬁﬂ- (2.5.4)

Note that once again, the first factor pertains to the skin property and that
the second non-dimensional factor represents the influence of the rib grid.
Thus for no ribs,

te o=t

E N

E
Since @ = 0 and B = 1 for no ribs.
In using eq. (2.5.3) and (2.5.4) a word of caution is required, Since t* and

E’* reproduce the requircd bending and extensional stiffnesses, D and K,

it is important to note that these are related to stress resultants and stress

couples only and not to strcsses. Thus, the equations into which t* and E*

are to be substituted must be cxpressed in terms of stress resultants and

couples,

2.0.017
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B = 16

Thus,

Dopt

O E (16)2
12(1-v%) | 144

oS WETETET RN ey g T PR TR T M ST

geometrically related to strains,

a = 1/3’

Since the equivalent weight thickness, t, is given by
t = t(1+3a)

thie implies an equal distribution of rib and skin material.

_ 3 _

16(4 t) = 12t
_ &(; )_L
_(9) 16E_9Eo
. Egt (i)
= 3

l-v2

3

3

E t

— 192
12(1-v7)

Use of t* and E* for deflections is also permissible since deflections are

To obtain a quantitative idea of the magnitude of t* and E¥, it is found by

experience that for many optimum constructions, one has approximately,

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

PSS

oy




Thus the extensional stiffness for many optimized constructions is increased

by a factor of 4/3, and the bending stiffness is increased by a factor of 192

by the addition of an equal weight of material in ribs to the original skin

material,

2.6 SUMMARY OF BASIC THEORY

2
*
1 y
3 x >

RIB ORIENTATIONS COORDINATES

GRID GEOMETRY

2.6.1 Non-dimensional Paramcters

, . bd
th’

8- 4,
t

1/2
p = [30(14-6)Z + (1t (Hm‘.d)]

2.0.019
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2.6.2 Grid Moduli

=
1
o

E,

2.6.3 Rigidities

?
i
¥
¥
i
}
:

Extensional, K

) ) -9
K = 3 ]E(z) dz = gEA = FE_t(1+a)
2
Bending, D
3
E t 2
9 2, _9g;.2ZC (‘3 )
D =3 fE(z)Zdz =8Bl " 3712 \1+a
z
Neutral Axis
fE(z) 2dz = 0 = centroid of transformed area, A.
Z

2.6.4 Equivalent t* and E*

g = l—'z—I'—t—L

A l+a
A

Ex = Bow * Eo 75

2,6,5 Composite Stress-Strain Relations

| N, 1 1/3 {"x}
. = K
: Ny 173 1 | %y

2,0.020
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Mx 1 1/3 Xy
=-D
My 1/3 1 Xy
N = Sy
xy 3 'xy
_ D
Mxy = 3 (ZXxy)

2.6.6 Membrane Skin Stresses

N
¢ = =,
x et
N
g = -t—z',
y eff
N
.5 4
- =
XY tetf
togf ° t(l+a) = A = Transformed area

2.6.7 Membrane Rib Stresses

1 1
¢ = e (N -=N)
1 teff x 3y

Q
f

2. (N + "IN
X

)
2 31:(3ff y y

2
0. =

37 Bty (N - VIN, )

2.6.8 Equivalent Weight Thickness

E = t(l+3a)

2.0.021
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Section 3
ISOGRID CHARACTERISTICS AND ADVANTAGES

Isogrid is a lattice of stiffening ribs forming an array of contiguous
equilateral triangles. This is the simplest arrangement of bar elements that
exhibits isotropic properties, hence the name "isogrid". Intersecting ribs
so arranged make a complete structure whether attached to a skin as

stiffening or used as an open lattice.

Because of the isotropic property and an effective Poisson's ratio of 1/3,
like most homogeneous structural metals, isogrid can be mathematically
transformed to an equivalent homogeneous material layer (see Figure 3-1).
The transformed expression can be substituted in:o the shell equations in
available literature to analyze the gross behavior of isogrid structures.
More detailed finite element analysis is needed to examine local stresses in

the critical areas of nodal intersections and the bars.

CR169
E' =Eq b/b
E2 = 0.21106)
Eq=1.0(108)
£ = 10 (108)
-bg = 0.10
. b2 = 0 EQUIVALENT 3-LAYER
- — SANDWICH
1SOGRID PLATE
Figure 3-1. Isogrid Is Simple to Analyze
3.0.001




Being easy to analyze, the construction is also readily optimized as will be
shown in Section 4. Pasic structure sizing over a wide range of load
intensities can be accomplished rapidly, allowing a quick and accurate study
of the effect of standardizing geometry. As shown in Section 4-13, this
technique has beeu applied to a large integrally stiffened propellant tank to
prove that the penalty of geometric standardization is very small — about half

of one percent, in a recent phase B shuttle design.

As originally applied in a hardware program (the Orbital Workshop module
of the Skylab), isogrid open lattice of standardized geometry forms the walls
and floors of the crew quarters and internal experiment space. The intention
here was to provide a '"pegboard' pattern of equipment mounting points,
readily adaptable to change, As can be seen in Figures 3-2 and 3-3, the
equipment components are attached at the waffle nodes without structural
rework. It is evident that removal of the mounted equipment leaves the sub-
structure exactly as it was, permitting installation of any other installation
designed to fit the pattern, This scheme has advantages for a long-term
space base that will be periodically refurbished and updated with newly

developed advanced equipment.

The design requirement for this construction was a limit load capability of
250 pounds applied normal to the surface at any nodal point, Failure occurred
at 750 pounds in static test although the panels are equivalent in weight to a
continuous 0.025 aluminum sheet (0. 36 pounds per square foot). The geom-

etry is depicted in Figure 3-4.

While substantial local load capability is inherent in unreinforced isogrid,
occasionally local reinforcement is required to handle large concentrated
loads. How this can be accomplished with minimum weight is shown in Sub-
sections 4.5 and 4.6, As an example of the efficiency provided by ribs and
skin working together dissipating load, an 8-foot-diameter cylinder designed
for a compressive load intensity of 2, 500 pounds per inch required only

4.3 pounds of additional weight to handle a concentrated tangential load of
ZO,"OOO pounds, This was distributed within a hexagon 24 inches across the

flat (see Figure 3-5).

3.0.002




Figure 3-2. Distributing Concentrated Load

3.0.003




CR169
DAC- 35334

Figure 3-3. Equipment Attached to Nodes
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o WEIGHT EQUIVALENT TO
0.025 SHEET
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Figure 3-4. Skylab Floor and Wali Grid

As has been mentioned, the isogrid lattice is a complete structure by itself:
that is, it can effectively resist tension, compression, shear, and bending

loads. Stiffened by such a lattice, a skin has the same capabilities. There-
fore, either skin or lattice can be locally reinforced to handle local loads or
discontinuities from cutouts, This choice offers more design flexibility than

available with rectangular stiffening systems,

Similarly, this redundancy should offer exceptional opportunities to design
fail-safe structure. If, for example, the lattice is made separate from the
skin and then assembled to it, a crack in either lattice or skin cannot be
propagated across the joint, Shear and t-nsile loads in the skin can be
carried around the flaw by the redundant lattice system. Since this is not the
case with present rectangular stiffening systems, it should be possible to

obtain fail-safe design at lower weight in isogrid, Figure 3-6,

3.0.006
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F.gure 3-5 Renforced Hole for Concentrated Load
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Figure 3-6. Fail-Safe Concept

The rib lattice, carrying shear load and with its centroid spaced away from
the skin, in effect forms a second surface of a torque box, Therefore,
triangularly stiffened panels are torsionally stiff. This means that situations
where torsional stiffness is needed can be met with an isogrid open con-
struction instead of a closed torque box, The advantages of inspectability,
access to all surfaces, and elimination of moisture entrapment are obvious,
This kind of design can be applied to structural components such as access
doors, landing gear doors, door jambs, and speed brakes. Figures 3-7 and

3-8 show typical examples,

In compression-loaded cylinders, isogrid has been found advantageous in
another respect: it occupies less depth for the same compressive capability
as a rectangular stiffening system. This is true in the case when both kinds
of stiffening are in the form of constant depth waffle, even more so when the
orthotropic construction is optimum — with frames deeper than the stringers,
In a purely structural sense this is not important, but many designs require
clear space inside the frames. The deeper they are, the larger the con-

taining shell and therefore the weight, As an example, a recent study

3.0.007
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substituted isogrid for conventional construction in a transport airplane,

permitting reduction in fuselage structural depth from 4 inches to 1.5 inches.

The depth of construction noted above was that obtained by the simple optimi-
zation technique described in Subsection 4,2, Both weight efficiency and
structural space efficiency can be improved if the isogrid ribs are flanged.
This was proved in a space shuttle booster study where the depth of construc-
tion for a 198-inch radius and 10, 000 pounds per inch compressive loading
was 2,25 inches, Figures 3-9 and 3-10 show manufacturing samples of this
construction and a larger formability test specimen. The analysis does not
in this case optimize in a single step with a unique solution, Iterative
techniques must be employed., As a design progresses from the preliminary

sizing to the final configuration, refinements of this kind are in order.
The practical applications of the advantages of isogrid mentioned above are

a few of the cases so far encountered, More are sure to be uncovered with

time,
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Section 4
ANALYTICAL TECHNIQUES

4.1 SPHERICAL CAP WITH REVERSED PRESSURE

The spherical cap with reversed pressure consists of a portion of a sphere

cut off by a plane and loaded by uniform external pressure.

The load/in. in the sphere is uniform in all directions and is given by the

equation,

4.1.1 Typical Design Situations

This situation in design occurs most frequently for common bulkheads used
for separating propellants, such as LOX and LH, tanks. Considerable vehicle
length and skirt material may frequently be saved by such designs. Gener-
ally, the bulkheads are designed for tension. For some loading procedures,
however, reversed compressive pressure may act upon the bulkhead so that

it must also be dcsigned for stability under the compression loading. *

[t was this design condition which initiated the development of isogrid in
1964. (Reference 2-9)
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Other design possibilities might be spherical end closures in cylinders
subjected to external hydrcstatic pressure such as vacuum tanks or

submersibles.

4.1.2 Method of Optimization

The optimization technique used assumed that minimum weight occurs when

all modes of buckling i. e., general instability, rib-crippling, and skin buck-

ling are equally likely. This optimization principle is popularly known as the

'one-horse shay'' design principle. It assumes, in particular, that the var-

ious modes of buckling failure are uncoupled.

General Instability
Buckling of a complete sphere may be written in the form, Reference 2-4,

_ 1 E t

Ncr(l) = R (4.1.1)
3 (1 -v)

Since eq. (4.1.1) is in the form of a stress resultant, the equivalent t*

and E* of (2.5.3) and (2. 5.4) may be used to transform (4.1.1) into an

isogrid formula.

£ :::2
N (1) 1 E t

cr R
\13 (1 - v3
g2 (1+0)° N

= 5 5
’3(1_v2) (1 +a)

Et2

L)
3(1 - v9)

(4.1.2)
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This equation shows the typical form of iscgrid equations using a, B and 6, in
chat the first factor gives the strength of the skin and the second factor shows

the nondimensional increase due to the addition of the ribs. For typical

optimum designs, f = 16.

Since test values generally fall below theory, it is customary t> apply a

"knockdown'' or ''correlation factor,' Y, to eq. (4.1.2), Reference 2-8.

2
B Y Et
N = > R P
3 (1 - v9)
2
_ Et
N_ (1) = ¢y =58 (4.1.3)

With a proper interpretation of <, to account for the reduction due to boundary

effects, eq. (4.1.3) may also be used for spherical caps under external

pressure.

Skin Buckling
From Reference 2-9, the buckling stress in an equilateral triangie under

equal biaxial loading with simply supported edges is given by the equation,

kK °E 2
. = qf”“__(%) (4.1. 4

kK = 5.0
[of
Thus
,
kc " _ 5.0 "Z
= - T 4.62
12 (1 - v9) 12(9)
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From eq. (2.4.11) the skin stress in terms of the pressure is:

P
_ N, 5 5
% © Gy T2t (1 ta) (4.1.5)
Using eq. (4.1.4),
P R 2
_ cr _ t
N_(2) = —— = 4.62Et(1+a)(a)
t2
N (2) = ¢, Et(l +o0) = (4.1.6)
cr 1 hZ

where

_ 2
B _ -
(.1 = ( 2 ) 4.62 = 3.4|

Rib Crippling

From Reference 2-4, the buckling stress in a long plate simply supported
on three edge: and free on the fourth edge is,

kc nZE (b)Z
¢ = =y (4.1.7)
cr 12 (1 - VZ) d
k = 0.456
Thus
2

k n - 2

c > - 0.4)6877 - 0.422
12 (1 - V9 12 -9-)
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From eq. (2.4.12) for

P..R
N = N = =< = N (3)
x y 2 cr
N =20
Xy
e = G = 6. = o, = —2 N (3 (4.1.8)
cr 1 2 3 3t (1 +a) " cr c
Using (4.1.7),
2=
3 b
= - { e
N_.(3) Zt\l+o){:0.422E(d) |
2
b
= ¢,Et(l1+0)(3) (4.1.9)
c. = (0.422) = 0.634
2 2 . o U

Optimum Requirements

Collecting formulas, one now has the system of equations,

(4.1.10)

t2
ClEt(l+a)—Z
h

2

Et(l+a)b—2 (4.1.12)
d

Ncr(3) = C,

For optimum requirements, (4.1.10) to {4, 1. 12) must be simultaneously

. satisfied. Now these equations are indeterminate, in that four parameters

are to be determined, b, d, t, and h, while only three equations are given,




As a fourth equution, one may consider the burst condition,

R

F,, = 2?‘(1%07) (4.1.13)

where p is the burst pressure and Ftu is the tensile strength of the material.
Strictly speaking, eq. (4.1.13) holds only in the elastic region of loading.
Its use for burst conditions is conservative, since in the plastic state the

ribs will be more highly loaded than for elastic predictions.

It will be found fcr many design conditions that pressures higher than those

given by use of eq. (4.1.13) will yield lower weight designs! For example,

there may be no internal pressure. Obviously, some finite skin thickness,
t, is required while use of eq. (4.1.13) will give t = 0. The physical inter-
pretation of this phenomenon is that highier pressures mean thicker skins.
which in turn implies larger grid sizes, a, sc that deeper ribs may result
for a given amount of rib material. This will occur for increasing pres-
sures until the increase in skin weight counteracts the increase in general

instability due to deeper ribs.

As a consequence, an optimum burst pressure exists which divides all

designs into two classes. In the first class are all designs whose burst pres-
sure is less than the optimum pressure. These designs are called ' com-

pression-critical" designs. They will have the very desirable property that

burst margins are in excess of requirements. This can be a very important
effect for prevention of critical growth of flaws in cyclic loading. In the
second class are all designs whose optimum pressure is less than the burst
pressure. Inthese cases, the burst pressure dominates. These designs

are called '"pressure-critical. "

To solve eq. (4.1.10) ~ (4.1.13) simultaneously, introduce the non-dimensional

loading parameter, N,

_ P (F
N - —é—’;(—tl’-) (4.1. 14)

P

:
1
:
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from (4.1.11), (4.1.12) and (4. 1.14),
— t 2
N - Cl(B’) (4.1.15)

From (4.1.12), (4.1.13) and (4.1. 14),

N = cz(-g-) (4.1.16)

4
-2 bt bd)/t)
= N = ¢,c, —— = c.c — -
192 | 2,2 lz(th \3
2
- = %% 7

Thus, since ¢ and & are positive,

N - _——
N = Vei¢; ?2- . (4.1.17)

Eq. (4.1.17) satisfies the conditions of simultaneous rib-crippling, skin

buckling,and burst,

From eq. (4.1.10), (4.1.13) and (4. 1. 14),

N t g P g
N = ¢, = = ¢
tu
or
F
= tn p
2N p < CO m (4.1.18)
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Eq. (4.1.18) satisfies the condition of simultaneous general instability and

burst.

If the non-dimensional loading parameters

K m (103) (4.1.19)

'CICP

F
y = it (4.1.20)

< = -% (103) (4.1.21)
6
y = — (4.1.22)

(1 +0)2

It is noteworthy that the right-hand sides of these equations are pure func-
tions of the geometry. Boundary conditions for the plate elements and
correlation factor are not involved. For this reason it is convenient to stop
at this point and consider the solution as a mapping of the a, ¢ domain into
the x, y domain instead of attempting a simultaneous solution. The mapping

solution will thus have a validity that is independent of ¢y, ¢, and cj.
The equivalent weight thickness, t, is,

t = t(1 ¢ 30)

Using eq. (4.1.13) this becomes,

ry pR(1 + 30)

= - , 1,0.,
ZI-tuH b o)
t p 1 + 3a
R TF <l+a> (4.1.23%)
tu
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One now has the complete solution in terms of the nondimensional loading

parameters, p/ F, = and p cr/ E.

By varying p/ F, ~ for a given value of p cr/ E, the nondimensional weight

curve may be constructed.

4

t
R ‘-’g GIVEN

)
\

MINIMUM WEIGHT CURVE

Define the pressure for (tmin/R) as p_. f (tmin/R), and (po/Ftu)_are
computed for a sequence of values of (pcr/E), a master curve of (tmin/R)'
and associated optimum pressures, (p,/F¢ty) may be constructed. The graph
is given in Figure 4, 1-1. As may be seen, these curves plot as straight lines

on log-log graph paper.

If only (tmin/R) is desired and if p/Ftu < po/Ftu this graph is sufficient.
Such information is usually all that is required in preliminary design weight
studies. On the other hand, if the complete geometry is required, o-if the
design burst pressure, p, is greater than the minimum weight pressure, pg,

i.e., if the design is pressure critical, it will be necessary to use the x,

y; o, b, graph given on Figure 4, 1-2 to obtain t, This is done in the following

steps:

A. Compute x «nd y and from the graph read off the corresronding o

and

4.1.009
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B. t maynow be computed from the burst condition or from the minimum

weight pressure, p,.

PR

t=2Ftu(l+a) (4. 1.24)
- C. Knowing t, the triangle height, h may be computed from eq. (4. 1. 15).
1
h = Tt (4.1.25)
D. The rib depth, d, is given by t and &,
d = &t (4.1.26)

E. The rib width, b, is computed from eq. (4.1.16).

b = ’_Ii.d (4.1.27)
€2

As a check on the computed values, the ratio, bd/th, should agree with the

value of a read off the x,y; o, 6 graph.

Finally, the value to be used for the correlation factor, Y, may be taken
from Reference 2-8 as a function of the ratio, t*/R for lightly stiffened
domes. For heavily stiffened domes the result of test in Reference 1-1,
gives,

<
1

0. 425

C

o 0.612 Y =0, 260

This is the value used for the x,y; o, & curve in Figure 4. 1.2,

4.1.012




4.1.3 Worked Examples

Worked Example 1

Per = 21 psi

Phurst - 60 psi

R = 96 in,

E =11.6 (106) psi

F = 78.5 ksi

tu

P

cr _21 -6, -6
£ _11.6(10 ) = 1.81 (10 ™)

From graph,

F

P T,
[ Po )103 - 1.12 -min = 0.000805
tu

P, = 1.12 (78.5) = 87.9 psi 60.0 ps=i.

The design is compression-critical and the (tmin/R) value is valid.

T . =0.000805x 96 = 0.0772 in.
min —_—

If this is all that is desired, the analysis is completed. However, if the

geometry is required,

1.617 (107 3)

_ P F \ -6
5 . Per ( tu) _ 1.81 (10°°)
/

E \pr, 1.12 (107 3)

— 3
_Naod) 1617
X *T1.482 - 1.48% - 1.09

4.1.013
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R =1.617(10'3)[103]
Y 7 0.130\p 0. 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>